
Malaysian Journal of Mathematical Sciences 3(2): 203-226 (2009) 

 

A Class of Bézier-Like Splines in Smooth Monotone Interpolation 

 

Ng Seou Ling, V.P. Kong and B.H. Ong 
School of Mathematical Sciences,  

Universiti Sains Malaysia, 11800 Penang, Malaysia 

E-mail: seouling118@yahoo.com, kongvp@cs.usm.my,bhong@cs.usm.my 

 

 

ABSTRACT 
 

We develop a new family of curves, the quartic and quintic Bézier-like curves, and 
investigate the use of these curves in smooth monotonicity preserving interpolation. 
These polynomial curves have, besides four control points, two additional parameters 
for shape control. The effect of the two parameters on the curve is analysed. 
Conditions on these parameters for the quartic and quintic Bézier-like curves to be 

monotonic are derived.  Based on these conditions, a local 1
C  monotonicity 

preserving quartic Bézier-like spline interpolation scheme is presented. A 2
C  

monotonicity preserving interpolation scheme is also developed where the optimal 
quintic Bézier-like spline interpolant is chosen through a constrained minimization of 
its mean curvature. 
 

Keywords: Bézier-like spline; Monotonicity preverving; 1
C  monotone interpolation; 

2
C  monotone interpolation  

 

 

INTRODUCTION 

In many areas of science and engineering, it is often necessary to 

obtain a continuous mathematical representation of a finite set of discrete 

data. It is well known that standard techniques for interpolation are often 
incapable of reproducing the shape of the data like monotonicity, convexity 

or positivity and this may destroy the physical interpretation of the 

phenomenon or the idea of the designer. This has led to considerable interest 

in shape preserving interpolation problem. 
 

The problem of monotonicity preserving interpolation has been 

considered by a number of authors. Fritsch and Carlson, (1980) use the 
representation of Hermite cubic polynomial to derive the necessary and 

sufficient conditions for a cubic to be monotone on an interval. Delbourgo 

and Gregory, (1985) develop an explicit representation of a 1C  piecewise 

rational cubic function which can be used to solve the problem of shape 

preserving interpolation. Heß and Schmidt, (1994) construct a monotonicity 
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preserving interpolation of discrete data by quintic polynomial splines. They 

show that monotonicity can be always preserved by quintic 2C -splines.  

 

In (Jamaludin et al., 1996) the authors introduced cubic Bézier-like 

curves.  Based on the cubic Bézier-like basis functions, we develop in this 

paper a new family of curves, the quartic and quintic Bézier-like curves. 
These polynomial curves are derived via a linear or quadratic convex 

combination of two or three cubic Bézier-like curves which have the same 

control points. With the representation of these curves in the Hermite form, 
their parameters are grouped in a natural way as ratios thus resulting in two 

new parameters which are referred to as α  and β .  The effect of α  and β  

on the quartic and quintic curves is analyzed.  They provide local control on 
the shape of the curve. We present the use of these Bézier-like curves in 

smooth monotonicity preserving interpolation. For the piecewise quintic 

curves, the second order continuity at the end points of the adjacent 

segments of the curves can be attained easily by using these two parameters 
independently from one another.  We derive the monotonicity conditions on 

these parameters of the quartic Bézier-like curve. Based on these conditions, 

we construct a local 1C  monotonicity preserving curve interpolation scheme 

using the quartic Bézier-like splines. We also derive monotonicity 

conditions for the quintic Bézier-like curve and a 2C  monotonicity 

preserving curve interpolation scheme is developed where the optimal 

quintic Bézier-like spline interpolant is chosen through a quadratic 

programming. 
 

 

CUBIC BÉZIER-LIKE CURVE AND ITS PROPERTIES 

The representation of a cubic Bézier-like curve with parameters 

,a b ∈�  and control points 0 1 2 3
i

V , i , , ,= , n
iV ∈� , n  is a positive integer, 

is defined in (Jamaludin et al., 1996) to be 

 

 ∑
=

=
3

0

),;(),;(
i

ii
VbatFbatr , 10 ≤≤ t                            [1] 

 

where the iF  are cubic basis functions with 

 

( ))2(1)1(),;( 2

0
attbatF −+−= ,  ttabatF 2

1
)1(),;( −= , 

2

2
)1(),;( ttbbatF −= ,  ( ))2()1(1),;( 2

3
bttbatF −−+= ,  ,a b ∈� . 
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Note that the basis functions )( tF
i

 are controlled by two parameters 

a  and b . This property gives us the convenience to change the shape of the 

curve without changing the control points.  Some useful properties of this 

basis functions are as follows: 

 
(i)   Positivity 

      If 3,0 ≤≤ ba , then 

 0),;( ≥batF
i

, 10 ≤≤ t . 

 

(ii)   Partition of unity 

 ∑
=

=
3

0

1),;(
i

i
batF , 10 ≤≤ t . 

 

The piecewise cubic Bézier-like curve r  in [1] with control points 

i
V  has

 
the following interpolatory properties at the endpoints: 

 

0
)0( Vr = , 

3
)1( Vr = , 

)()0(
01

VVar
dt

d
−= ,    )()1(

23
VVbr

dt

d
−= . 

 

For 2=n  or 3 , every point on the curve in [1] lies in the convex hull 

of the control polygon if 3,0 ≤≤ ba . This is a consequence of the above 

properties (i) and (ii) of the basis functions. 

 

Quartic Bézier-like Curve 

Let ),;(
1

batr  and ),;(
2

qptr  be two pieces of cubic Bézier-like curves 

with the same control ordinates ( : 0 3)iV i∈ ≤ ≤�  but their parameters may 

be different, i.e. 

∑
=

=
3

0
1

),;(),;(
i

ii
VbatFbatr , 

∑
=

=
3

0
2

),;(),;(
i

ii
VqptFqptr , 10 ≤≤ t , 

 

where 0, >qa  and ,b p∈� . Then we define ),,,;( qpbatQ  which is 

abbreviated as )(tQ  by 

 

1 2( ) (1 ) ( ; , ) ( ; , )Q t t r t a b t r t p q= − + , 10 ≤≤ t . 
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The quartic Bézier-like curve )(tQ  has the interpolatory properties at the 

endpoints similar to those of the cubic Bézier-like curve in [1]: 

 

0
)0( VQ = ,  

3
)1( VQ = , 

)()0(
01

VVaQ
dt

d
−= ,    )()1(

23
VVqQ

dt

d
−= .                [2] 

 

If  0m  and 1m  are the first order derivatives of Q  at 0  and 1 respectively, 

then by [2] and putting  (1 )u t= − ,  we obtain 

 

4 3 2 20 3 0
0 0 0 1

3 41
3 3

( ) 4 6
4 2 6 6

4
4

m V V p b
Q t V u u t V u t m m

a q

m
ut V V t

+   
= + + + + −   

   

 
+ − + 

 

 

 

which clearly suggests that the parameters , , ,a b p q  can be grouped as 

ratios /p aα = , /b qβ = . Thus )(tQ  and its first order derivative can be 

represented as follows: 
 

4 3 2 20 3 0
0 0 0 1

3 41
3 3

1
( ; , ) 4 6 ( )

4 2 6

                      4
4

m V V
Q t V u u t V u t m m

m
ut V V t

α β α β
+   

= + + + + −   
   

 
+ − + 

 

                 

[3] 
 

( )
( )

3 2
0 0 0 1

2 3
1 1 0 1

2
( ; , ) 3 2 ( )

3
2

3 2 ( )
3

d
Q t m u u t m m m

dt

u t m m m m t

α β α β

β α

= + ∆ − + −

+ ∆ − + − +
                         

[4] 

where  
03

VV −=∆ . 
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Quintic Bézier-like Curve 

Suppose ),;(
1

batr , ),;(
2

qptr and 3 ( ; , )r t f g  are three pieces of cubic 

Bézier-like function curves with the same control ordinates 

( : 0 3)iV i∈ ≤ ≤�  but their parameters are different,  i.e. 

∑
=

=
3

0
1

),;(),;(
i

ii
VbatFbatr , 

∑
=
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3

0
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),;(),;(
i

ii
VqptFqptr , 

∑
=

=
3

0
3

),;(),;(
i

ii
VgftFgftr , 10 ≤≤ t , 

 

where 0, >ga  and  , , ,b p q f ∈� . 

 

When these three curves are combined as a convex combination with 
quadratic polynomial coefficients, we obtain a quintic polynomial curve 

( ; , , , , , )R t a b p q f g  on ]1,0[∈t  which is abbreviated as )(tR and defined 

by 
 

2 2

1 2 3
( ) (1 ) ( ; , ) 2 (1 ) ( ; , ) ( ; , )R t t r t a b t t r t p q t r t f g= − + − + .        [5] 

 

The quintic Bézier-like curve )(tR  has the interpolatory properties at the 

endpoints similar to those of the cubic Bézier-like curve in [1]: 

 

0
)0( VR = , 

3
)1( VR = , 

 

       )()0(
01

VVaR
dt

d
−= ,    )()1(

23
VVgR

dt

d
−= .         [6] 

 

As we have a number of parameters at our disposal, we let  / 2p a=  and 

/ 2p q=  to obtain a simpler representation for ( )R t . If in addition, 
0

m  and 

1
m  are the first order derivatives of ( )R t  at 0  and 1 respectively, then by 

[5] and [6] with )1( tu −= , 
03

VV −=∆  and grouping the parameters as 

ratios /f aα = , /b gβ = ,  then  )(tR  can be represented as 
 

.)5()73(

)37()5(),;(
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4
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3010
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++−+++=

α

ββα
    

[7]        
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Its derivatives are 

 

4 3
0 0 1 0 0

2 2 4
1 1 1 0 1

( ; , ) 2(3 ) 3( 4

) 2(3 )

d
R t m u m m u t m m

dt

m m u t m m m t

α β β α

β α

= + ∆ − − + − + + ∆

+ − + ∆ − − +
 [8] 

 
and  

 
2

3 2
1 0 0 1 12

2 3
0 0 1 0 1

( ; , ) 2(3 3 ) 6( 2 )

6( 2 ) 2( 3 3 ) .

d
R t m m u m m m u t

dt

m m m u t m m t

α β β α β

α β α

= ∆ − − + ∆ + − +

+ − ∆ + − − + − ∆ + +

 

In particular, 
2

1 02
(0; , ) 2(3 3 )

d
R m m

dt
α β β= ∆ − −  and 

2

2
(1; , )

d
R

dt
α β  

2( 3= − ∆ 0 13 )m mα+ + . Observe that each of these two endpoint derivatives 

only depends on one of the two parameters, α  or β , and this makes it very 

easy to achieve 2C  continuity between adjacent segments. 

 

Effect of the Parameters αααα and ββββ on the Quartic and Quintic Curves  

We examine the effect of the parameters α  and β  on the quartic Bézier-

like curve and quintic Bézier-like curve. We are only interested in the case 

where 0≥α  and 0≥β . Differentiating [3] and [7] partially with respect to 

the parameters α  and β , 

 

22

0
tum

Q
=

∂

∂

α
 ,       32

0
tum

R
=

∂

∂

α
,                                                [9] 

22

1 tum
Q

−=
∂

∂

β
,      

23

1 tum
R

−=
∂

∂

β
.                                       [10] 

 

By [9], we notice that for a fixed )1,0(∈t , the effect of α  depends on 
0

m . 

If 
0

m  is positive, then 
Q

α
∂

∂
 and 

R

α
∂

∂
 are also positive and so for any fixed 

)1,0(∈t , ),;( βαtQ  and ),;( βαtR  will increase as α  is increased. If 

0
m  is negative, then ),;( βαtQ  and ),;( βαtR  will decrease as α  

increases at any fixed )1,0(∈t . Thus the set  { }( ; , ), [0,1] : 0Q t tα β α∈ ≥  

forms a nested family of curves, i.e. the curves in this family do not intersect 
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one another except at the end points 0t =  and 1t = . Similarly 

{ }( ; , ), [0,1] : 0R t tα β α∈ ≥  forms a nested family of curves (see Figures 1 

and 4). 

 

The effect of the parameter β  depends on 1m . It is clear from [10] that, for 

any fixed )1,0(∈t , if 
1

m  is negative, then ),;( βαtQ  and ),;( βαtR  

increase when β  increases. If 
1

m  is positive, then ),;( βαtQ  and 

),;( βαtR  will decrease as β  increases at any fixed )1,0(∈t . Thus 

{ }( ; , ), [0,1] : 0Q t tα β β∈ ≥  and { }( ; , ), [0,1] : 0R t tα β β∈ ≥  are also 

nested families of curves (see Figures 2 and 5). 

 

Letting µβα ==  and partially differentiating Q  and R  with respect to µ , 

we have 

 

 
22

10 )( tumm
Q

−=
∂

∂

µ
,                                                    [11] 

)(
22

tgtu
R

=
∂

∂

µ
, 

 

where     )()1()(
10

mtmttg −−+= . 

 

From [11], for any fixed )1,0(∈t , as µ  is increased, ),;( βαtQ  

increases if 0
10

>− mm  and decreases if 0 1 0m m− <  (see Figure 3). On the 

other hand, the sign of 
R

µ
∂

∂
 depends directly on the sign of )(tg  which is a 

linear combination of 
0

m  and 
1

m .  If 0
0

>m  and 0
1

>− m , then for any 

fixed )1,0(∈t , )(tg  is positive. Thus, for any fixed )1,0(∈t , 

),;( µµtR  increases when µ  is increased. If 0
0

<m  and 0
1

<− m , then 

0)( <tg  and so for any fixed )1,0(∈t , ),;( µµtR  decreases when µ  

increases. If 0)(
10

<− mm , )(tg  will change sign at 1

0 1

m
t

m m
=

+
. Thus, 

when µ  is increased, ),;( µµtR  increases on the interval 1

0 1

0,
m

m m

 
 + 

 

and decreases on 1

0 1

,1
m

m m

 
 + 

 or vice versa (see Figure 6). 
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0P  

1P

(i) 
(ii) 

(iii) 

(iv) 

(v) 

0P

1P

(i) 

(ii) 

(iii) (iv) 

(v) 

Figure 3: Quartic Bézier-like curves with  

different parameter values 0 1 3 8, , ,µ =   

or 20 . 

Figure 4: Quintic Bézier-like curves with 

 different parameter values 0 1 3 8, , ,α =   

or 20  while 1β = . 

1P  

0P  

(i) 
(ii) 

(iii) 

(iv) 

(v) 

Figure 1: Quartic Bézier-like curves with 

different parameter values 0 1 3 8, , ,α =   

or 20  while 1β = . 

0P  

(i) 

(ii) 

(iii) 

(iv) 

(v) 

1P

Figure 2: Quartic Bézier-like curves with  

different parameter values 0 1 3 8, , ,β =   

or 20  while 1α = . 

Below are some graphical examples that illustrate the effect of the 

parameters α , β  and µ  on the quartic Bézier-like curve ),;( βαtQ and 

quintic Bézier-like curve ),;( βαtR . In the Figures 1-6, the given data 

points 2

0 1,P P ∈�  are joined with a dashed line and the given derivatives at 

the endpoints, 0=t  and 1=t  are respectively 3
0

=m  and 4
1

=m . The 

curves with ascending parameter values are respectively marked as (i), (ii), 
(iii), (iv) and (v). The following different values are used for the varying 

parameter in each of the figures, namely 0, 1, 3, 8 and 20. 
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1
C  MONOTONICITY PRESERVING INTERPOLATION 

WITH QUARTIC BÉZIER-LIKE SPLINE 

In this section, we derive the monotonicity conditions in terms of the 

parameters α  and β  of the quartic Bézier-like curve. By using the 

monotonicity conditions, we construct a 1C  monotonic quartic Bézier-like 

spline interpolating scheme.  
 

Let }0:),({ niyxP
iii

≤≤=  be a set of monotonic increasing data 

so that 
n

xxx <<< �
10

 and 
n

yyy ≤≤≤ �
10

.  The derivatives 
i

d  at 
i

x  

are estimated by using the Fritsch and Butland’s method (1984),  i.e. for 

1 1i n≤ ≤ − , 

 

1
1

1

2
, if 0

0, otherwise

i i
i i

i iid
−

−
−

∆ ∆
∆ ∆ >

∆ + ∆= 


 

 

where  
i

ii

i h

yy −
=∆ +1  and  

iii
xxh −= +1

, 0 1i n≤ ≤ − .  The derivative 0d  at 

the first data point may be defined as 
 

{ }*

0 0 0min max{0, }, 2d d= ∆  

 

0P  

1P  

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Figure 5: Quintic Bézier-like curves with  

different parameter values 0 1 3 8, , ,β =   

or 20  while 1α = . 

1P  

(ii) 

(iii) 
(iv) 

(v) 

(i) 

0P  

Figure 6: Quintic Bézier-like curves with  

different parameter values 0 1 3 8, , ,µ =  or 20 . 
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where  
0 0 2 0

* 0 1
1 1 2 00

1 , if  0

0 otherwise

y y

x xd

∆ ∆ − 
+ ∆ − ∆ ≠ ∆ ∆ −=  



.    

 

The derivative nd  is defined similarly. Clearly we have   10 , 2i i id d +≤ ≤ ∆ ,  

0 1i n≤ ≤ − .    

 

Monotonicity Preserving Conditions 

Let us consider the quartic Bézier-like curve ),;( βαtQ  in [3]. For 

0≥
td

dQ
 on ]1,0[ , it is necessary that the derivatives 0m  and 1m  are non-

negative. By the method used in the estimation of derivatives, we have  
 

∆≤≤ 2,0
10

mm  

where 3 0 0V V∆ = − > .  

 

Since 0, ≥tu  for ]1,0[∈t , it follows that if the coefficients of the cubic 

Bernstein basis functions in [4] are non-negative, then 0),;( ≥βαtQ
dt

d
. 

Thus, the sufficient conditions for ),;( βαtQ  to be monotonic on ]1,0[  are 

 

00 ≥= mA , 

0)(
3

2
2

100
≥−+−∆= mmmB βα ,                [12] 

0)(
3

2
2

011
≥−+−∆= mmmC αβ ,                                      [13] 

01 ≥= mD . 

 

When the above sufficient conditions are not met, there are four cases to be 

considered. 

 

Case 1: 0,0,0 <>> BDA  and/or 0<C  

The following theorem quoted from (Goodman et al., 1991) gives us the 

conditions for 0≥
td

dQ
 on ]1,0[ . 
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Theorem 1:   Let 

 
3223 )1(3)1(3)1()( tDttCttBtAtP +−+−+−= ,  10 ≤≤ t , 

 

where 0, >DA , and 0<B  and/or 0<C .  
 

Then ( ) 0P t >  for [0 1]t ,∈  [resp. ( ) 0P t =  for only one point in (0 1), ]  if 

and only if 

 

( )2 2 3 3 2 2

3 6 4 0B C ABC D AC B D A D+ − + − <    [resp. = 0].            [14] 

 

Let us denote 
2 2 3 3

( , , , ) 3 6 4( )A B C D B C ABC D AC B DΦ = + − + −  

2 2

A D . Observe that ( )
d

Q t ; ,
dt

α β  in [4], has the same form as the cubic 

polynomial in the theorem above. In this case, 0, 0, 0A D B> > <  and/or 

0C < . We can check whether the curve segment Q  is monotonically 

increasing by using the condition in [14]. If ( ) 0A, B, C, DΦ < , then we can 

use the default values for α  and β  to construct a monotonic curve, else we 

scale both α  and β  by using a scalar factor, )1,0[∈λ , so that the new 

values of B  and C  which are respectively 
 

)(
3

2
2

100

* mmmB βαλ −+−∆=   and 

)(
3

2
2

011

* mmmC αβλ −+−∆=  

 

satisfy  * *( , , , ) 0A B C DΦ = .  
 

Case 2: 0=A  and 0>D  

By substituting 0A =  (i.e. 0 0m = ) in [12] and [13], we obtain 

 

1

2
2

3
B mβ= ∆ − , 

11 3

2
2 mmC β+−∆= . 
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Since ∆≤≤ 20
1

m , for any non-negative β ,  we have  0≥C . For 
dQ

dt
 to be 

non-negative, it is necessary that 0≥B  since 0=A . We need to scale the 

β  by a scalar factor )1,0[∈λ  so that 
 

1

2
2 0

3
B mλ β= ∆ − ≥ . 

 

Case 3: 0>A  and 0=D  

This case is similar to case (ii) above.  We just need to scale α . 

 

Case 4: 0=A  and 0=D  

Since the two endpoint derivatives are zero, 0
0

== mA  and 0
1

== mD , 

02 ≥∆=B  and  02 ≥∆=C . Thus 0
dQ

dt
≥  for any 0, ≥βα . 

1
C  Monotonicity Preserving Interpolation 

Let { ( ) : 0 }i i iP x , y i n= ≤ ≤  be a set of monotonic increasing data so that 

0 1 nx x x< < <�  and 0 1 ny y y≤ ≤ ≤� . (The case of a monotonic decreasing 

set of data can be treated in a similar manner). We shall now construct a 1C  

monotonic quartic Bézier-like spline interpolating curve. The derivatives 
i

d  

at 
i

x  are estimated by using Fritsch and Butland’s method as described 

earlier. Between each consecutive two data points ( , )
i i

x y  and 
1 1

( , )
i i

x y+ + , if 

1i iy y += , then a straight line segment is constructed joining the two data 

points. Otherwise a piece of quartic Bézier-like curve ( ; )i i iQ t ,α β , 

1,,0 −= ni …  of the form in [3] is constructed on ],[
1+ii

xx  interpolating 

the data values 
1

, +ii
yy  and the derivatives 

1
, +ii
dd  at the endpoints, namely  

 

4 3 2 2 1

3 41

1 1 1

1
( ; , ) 4 6

4 2 6

1
4 .

6 4

i i i i

i i i i i i i i

i i

i i i i i

h d y y
Q t y u u t y u t h d

h d
h d u t y y t

α β α

β

+

+
+ + +

+  
= + + + +  

  
 − + − +  

  

        [15]                 
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The construction of any curve segment is done locally. On each interval 

],[
1+ii

xx , we determine the values for 
i

α  and 
i

β  to construct a 1C  

monotonic quartic Bézier-like curve segment ),;(
iii

tQ βα  in [15]. Let the 

initial values of 
i

α  and 
i

β  be 3. Other non-negative values may be used for 

i
α  and 

i
β , but  3==

ii
βα  are chosen as we have observed  that this 

choice gives a visually pleasing curve in general. If these default values of 

i
α  and 

i
β  give a monotonic curve segment, then the curve ),;(

iii
tQ βα  is 

fixed otherwise the values of 
i

α  and 
i

β  will be determined by scaling the 

initial values with some suitable factor )1,0[∈
i

λ  as described in section 

titled Monotonicity Preserving Conditions. The other curve segments are 

generated analogously.  

 

 
2

C  MONOTONICITY PRESERVING INTERPOLATION 
WITH QUINTIC BÉZIER-LIKE SPLINE 

 
Consider a strictly increasing set of data ( ){ }niyxP

iii
≤≤= 0:,  

so that 
n

xxx <<< �
10

 and
n

yyy <<< �
10

,
1i i i

h x x ,+= − 0 1i , , n= −� . 

(The case of a strictly decreasing set of data can be treated in a similar 

manner). We will derive the 2C  and monotonicity conditions for the quintic 

Bézier-like spline to produce a 2C  monotonically increasing quintic Bézier-

like spline curve for the monotonic data. 

 

The derivatives 
i

d  at 
i

x  are estimated by using Fritsch and Butland’s 

method. Between each consecutive two data points ),(
ii

yx  and 

),(
11 ++ ii

yx , a piece of quintic Bézier-like curve ),;(
iii

tR βα  of the form 

[7], 
 

5 4 3 2

1 1

2 3

1 1

4 5

1 1 1

( ; , ) ( 5 ) ( 7 3 )

( 3 7 )

( 5 ) , [0,1],

i i i i i i i i i i i i i i

i i i i i i i

i i i i

R t y u h d y u t h d h d y y u t

h d h d y y u t

h d y ut y t t

α β β

α
+ +

+ +

+ + +

= + + + − + +

+ − + +

+ − + + ∈

                      [16] 

 

is constructed on 1[ , ]i ix x +  interpolating the data values 
1

, +ii
yy  and the 

derivatives 
1

, +ii
dd  at the endpoints. 
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2
C  Condition 

Consider the second order derivatives at the joints of two adjacent curve 

segments, 
 

2
3

12

2

1 1

2

1

3

1

( ; , ) 2(3 3 )

6( 2 )

6( 2 )

2( 3 3 )

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i

d
R t h h d h d u

dt

h h d h d h d u t

h h d h d h d ut

h h d h d t

α β β

α β

α β

α

+

+ +

+

+

= ∆ − −

+ ∆ + − +

+ − ∆ + − −

+ − ∆ + +

 

 

where 
iiii

hyy /)(
1

−=∆ + . For 11 −≤≤ ni , the 2C  continuity requirement 

at 
i

x  is 

 

1 1 12 2 2 2

1

1 1
(1; , ) (0, , )

( ) ( )
i i i i i i

i i

d d
R R

h dt h dt
α β α β− − −

−

= . 

 

So we require for 11 −≤≤ ni ,  

 

( )
1111111

333 +−−−−−− +=+−∆+∆
iiiiiiiiiiiii

dhdhhhdhh βα .            [17] 

 
 

We now show that it is always possible to find non-negative values for 
1−iα  

and 1,,3,2,1, −= ni
i

…β , such that [17] is satisfied. For simplicity, let us 

first consider 
iii

k==− βα
1

. Then from [17], we have 

 

 

111

111 ])([3

+−−

−−−

+

+−∆+∆
=

iiii

iiiiiii

i dhdh

hhdhh
k ,  .1,,1 −= ni …              [18] 

 
 

However, 
i

k  obtained from [18] may be negative. The value of 
i

k  can be 

ensured to be non-negative by decreasing the estimated value of 
i

d . 

Therefore we need to consider two cases. 
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Case 1: ( ) 0333
111

≥+−∆+∆ −−− iiiiiii
hhdhh   

In this case, 
i

k  in [18] is non-negative. We retain the value of 
i

d  which was 

estimated by the Fritsch and Butland’s method. 
 

Case 2: ( )1 1 1
3 3 3 0

i i i i i i i
h h d h h− − −∆ + ∆ − + <   

In this case, the derivative 
i

d , which is 1

1

2 i i

i i

−

−

∆ ∆

∆ + ∆
, obtained by Fritsch and 

Butland’s method is too big. Thus we scale the derivative 
i

d  by redefining it 

as: 

1

1

i i
i i

i i

d ω −

−

∆ ∆
=

∆ + ∆
 

 
where 

 







∆∆

∆+∆








+

∆+∆
=

−

−

−

−−

ii

ii

ii

iiii

i hh

hh

1

1

1

11ω .                               [19] 

 

Observe that [17] is then satisfied with 0=
i

k .  

 

The value 
i

k  in [18] for case 1 or  0=
i

k  for case 2 may be used as the 

initial value of 
1−iα  and 

i
β , but they may be not good enough to produce a 

visually pleasing 2C  continuous curve. So these initial values may be 

improved through a constrained optimization process with an objective 

function that reflects the desired ‘fairness’ on the curve.  

 

We minimize the mean curvature of the interpolating quintic which is 
 

( )

2
21

2
0

2 2 2 2 2 2

1

1 1

( ; , )

4 105 (42 7 3 ) (42 7 3 )
.

35 (7 7 21) 105 105

i i i

i i i i i i i i

i i i i i i i i i

d
R t dt

d t

h d d

d d d

α β

α α β β
α α β β

+

+ +

 
 
 

∆ + − + + − + 
=  + − + + − ∆ − ∆ 

∫
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Thus the optimization problem is formulated as: 

 

 minimize 

2
1 21

2
0

0

( ; , )
n

i i i

i

d
R t dt

dt
α β

−

=

  
  
   

∑ ∫                          [20] 

 

subject to the 2C  constraints [17] and 0,0 ≥≥
ii

βα  for 10 −≤≤ ni . 

 

The variables in the optimization problem are the 
i

α ’s and 
i

β ’s only. So 

our objective function is a quadratic polynomial subject to the 2C  conditions 

in [17] which are linear constraints in 
i

α  and 
i

β . This is a quadratic 

programming which can be solved uniquely and effectively. The initial 

values for 
i

α  and 
i

β  obtained as described above are used with the 

constrained optimizer ‘fmincon’ in MATLAB (Optimization Toolbox, 2000) 
to solve the minimization problem.  

 

Monotonicity Preserving Conditions 

We next derive the monotonicity preserving conditions for a piece of quintic 

curve of the form [7] on [0,1] . Consider ( ; , )
d

R t
dt

α β  in [8]. Since 

0, ≥tu  for [0,1]t ∈ , it follows that if the coefficients of the quartic 

Bernstein basis functions are non-negative, then 0),;( ≥βαtR
td

d
. Thus, 

the sufficient conditions for ),;( βαtR  to be monotonic on [ 0 , 1]  can be 

formulated as follows: 

 

0
0

≥m , 

0
1

≥m , 

03
10

≥−−∆ mm β ,                                                                 [21] 

03
01

≥−−∆ mm α ,        

04
1100

≥−+∆++− mmmm βα  

 

where 
03

VV −=∆ . 
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2
C  Monotonicity Preserving Interpolation 

With the derivatives 0,
1

≥+ii
dd , the sufficient conditions for the 

monotonicity of ),;(
iii

tR βα  in [16] on ],[
1+ii

xx , 1,,0 −= ni …  from 

[21] are: 
 

03
1

≥−−∆ +iiii
dd β ,                                                    [22] 

03
1

≥−−∆ + iiii
dd α ,                                                    [23] 

04
11

≥−+∆++− ++ iiiiiii
dddd βα .                          [24] 

 

As 
1

2 −∆≤
ii

d  and 
ii

d ∆≤ 2 , we observe that [24] is automatically true. 

Moreover, 
 

03 ≥−∆
ii

d      and     03
1

≥−∆ +ii
d . 

 

So for 0,
1

>+ii
dd , [22] and [23] can be achieved by taking the value of 

i
β  

and 
i

α  sufficiently small, namely *0
ii

ββ ≤≤  and  *0
ii

αα ≤≤  where 

 

 0
3

1

*
≥

−∆
=

+i

ii

i d

d
β ,                                                   [25] 

 0
3

1*
≥

−∆
= +

i

ii

i d

d
α .                                                    [26] 

 

In the remainder of this section we shall restrict our attention to two adjacent 

curve segments, i.e. ),;(
111 −−− iii

tR βα  on ],[
1 ii

xx −  and ),;(
iii

tR βα  on 

],[
1+ii

xx  with 0>jd , 1 1i j i− ≤ ≤ + . We shall show that jα  and jβ  can be 

determined so that iijtR jjj ,1,),;( −=βα  are monotonically increasing 

and the composite curve is 2C  at 
i

x . 

 

For clarity, let us write concurrently the sufficient monotonicity preserving 

conditions for ),;(
111 −−− iii

tR βα  and ),;(
iii

tR βα  which are 

 

03 111 ≥−−∆ −−− iiii dd β , 

03
111

≥−−∆ −−− iiii
dd α ,                                                    [27] 

03
1

≥−−∆
+iiii dd β ,                                                    [28] 

03
1

≥−−∆ + iiii
dd α  
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and the 2C  continuity condition at 
i

x  from [17], i.e. 

 

( )
1111111

333 +−−−−−− +=+−∆+∆
iiiiiiiiiiiii

dhdhhhdhh βα .         [29] 

 

We shall show that 
1−iα  and 

i
β  can be chosen so that conditions [27]-[29] 

are satisfied. 
i

α  and 
1−iβ  can be determined by using similar arguments on 

the corresponding adjacent curve segments. We have shown earlier that [27] 

and [28] can be achieved by taking the values of 
1−iα  and 

i
β  sufficiently 

small by assuming *

11
0 −− ≤≤

ii
αα  and *0

ii
ββ ≤≤  where *

1−iα  and *

i
β  are 

as defined in [26] and [25] respectively. Let us take *

11 −− =
ii

αα  and *

ii
ββ = . 

However these values of 
1−iα  and 

i
β  may not satisfy the 2C  continuity 

condition in [29]. Here, there are two cases as in section titled 2C  

Condition. 

 

Case 1: ( ) 0333
111

≥+−∆+∆ −−− iiiiiii
hhdhh   

In this case, the value for 
i

d  estimated by the Fritsch and Butland’s method 

is retained. In order to make equation [29] true, we have to choose the values 

of 
1−iα  and 

i
β  appropriately. The values *

1−iα  and *

i
β  determined as in [26] 

and [25] may not satisfy [29]. If it is so, we can scale the values of *

1−iα  and 
*

i
β  by a scalar, ]1,0[∈iλ . Let 

 
*

11 −− =
iii

αλα , *

iii
βλβ = .                                  [30] 

 

We will get the values of 
1−iα  and 

i
β  which fulfill the 2C  condition [29] 

and monotonicity conditions [27], [28] by substituting [30] into [29] to 

obtain 
 

( )
0

3)(3

11

*

1

*

1

111 ≥
+

+−∆+∆
=

+−−−

−−−

iiiiii

iiiiiii

i
dhdh

hhdhh

βα
λ . 

 

Moreover, 1≤
i

λ  as shown below.  From [26] and [25], we obtain 

 

( ) ( )
11

*

1

*

1111
3 +−−−−−− +=+−∆+∆

iiiiiiiiiiiii
dhdhhhdhh βα . 
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So 

 

( ) ( )
11

*

1

*

1111
33 +−−−−−− +≤+−∆+∆

iiiiiiiiiiiii
dhdhhhdhh βα . 

 

Hence 1≤iλ . This ensures that while *

1−iα  and *

i
β  are being scaled by 

i
λ  in 

order to satisfy [29], the resulting values for 
1−iα  and 

i
β  still satisfy [27] 

and [28]. 
 

Case 2: ( ) 0333
111

<+−∆+∆ −−− iiiiiii
hhdhh  

In this case, the derivative id  obtained by the Fritsch and Butland’s method 

is too big. We shall scale down 
i

d  accordingly by using the scalar 
i

ω  in 

[19]. With the modified derivative, [27]-[29] can be satisfied by choosing 

0
1

=−iα  and 0=
i

β  as our simple initial values. 

 

The initial estimated derivatives 
0

d  and 
n

d  may be 0. However, these two 

cases can be similarly treated.  
 

As a result of the discussion above, we can get the initial values for 
1−iα  and 

i
β  to satisfy the 2C  and monotonicity conditions on ],[

1 ii
xx −  and 

],[
1+ii

xx . We observe that 
0

β  on ],[
10

xx  and 
1−n

α  on ],[
1 nn

xx −  will not 

be restricted by the 2C  condition. Hence, we can choose non-negative 

values for both of them which are sufficiently small to satisfy the 

monotonicity conditions.  
 

So far we have only proved that the existence of 
i

α  and 
i

β , 10 −≤≤ ni  for 

the 2C  and monotonicity conditions. But in general, the solution set 

obtained as above is not necessarily good. So we will use this solution set as 

the initial values to minimize the mean curvature in [20] subject to the 

continuity and monotonicity linear constraints which are [17] for 

1,,2,1 −= ni … , [22] and [23] for 1,,2,1,0 −= ni …  and the conditions 

0,0 ≥≥
ii

βα  to get optimal values for 
i

α  and 
i

β , 10 −≤≤ ni .  
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GRAPHICAL EXAMPLES 

We describe some graphical examples to illustrate the schemes 

presented in sections titled 1C  Monotonicity Preserving Interpolation with 

Quartic Bézier-Like Spline and 2C  Monotonicity Preserving Interpolation 

with Quintic Bézier-Like Spline. The symbol ‘ • ’ shown in all of the 
examples represents the data point of the interpolating curve. 

 

The quartic Bézier-like spline curve shown in Figure 7(a) is 

generated by using the default values of 3=
i

α  and 3=
i

β . Note that this 

curve is not monotonic. After applying the monotonicity conditions, the 

resulting curve which is shown in Figure 7(b) is now a 1C  monotonic 

increasing curve. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

Figure 7: (b) 
1C  monotonicity preserving quartic 

Bézier-like interpolant. 
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Figure 7: (a) 
1C  quartic Bézier-like interpolant. 
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The default values 3=
i

α  and 3=
i

β  are used to construct a 1C  

quartic spline curve. The curve in Figure 8(a) has a “dip” in the last curve 

segment. Thus, we have to impose the monotonicity conditions to ensure the 
interpolating curve increases monotonically as shown in Figure 8(b). 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

The 2C  piecewise quintic interpolant generated by using the 2C  

interpolation scheme is shown in Figure 9(a). Note that the curve is smooth. 
However it is not monotonic although the data is monotonic increasing. 

There are unwanted “wiggles” on the curve. When we impose the 2C  and 

monotonicity conditions on the interpolating curve, the resulting curve 
which is shown in Figure 9(b) is now indeed a smooth monotonic increasing 

curve. 
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Figure 8: (b) 
1C  monotonicity preserving quartic 

Bézier-like interpolant. 
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Figure 8: (a) 
1C  quartic Bézier-like interpolant. 
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In Figure 10(a), the 2C  curve without the monotonicity preserving 

conditions has a “dip” in the last curve segment and its fourth segment is not 

monotonic. After applying the monotonicity conditions on the interpolating 
curve, the resulting curve increases monotonically as shown in Figure 10(b). 

 

Figure 9: (a)  
2C  quintic Bézier-like interpolant. 
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Figure 9: (b)  
2C  monotonicity preserving quintic 

Bézier-like interpolant. 
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Figure 10: (b) 
2C  monotonicity preserving quintic 

Bézier-like interpolant. 
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Figure 10: (a) 
2C  quintic Bézier-like interpolant. 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

CONCLUSION 

In this paper, we have presented a new family of Bézier-like curves 

namely the quartic Bézier-like curves and quintic Bézier-like curves. 
Though of different degrees, both the quartic and quintic have four control 

points like a cubic Bézier and two additional parameters for the control of 

shape and smoothness. We use the former type to construct a 1C  

monotonicity preserving curve and the latter in 2C  monotonicity preserving 

interpolation. The implementation of a 1C  monotonic quartic Bézier-like 

spline curve interpolation is easier than the 2C  monotonic quintic Bézier-
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like spline curve interpolation since the former scheme is a local scheme. 

Thus any changes to a curve segment would not affect the whole curve.  

 
Though the latter scheme is a global scheme, it produces interpolant 

which have a higher degree of smoothness. From both of the schemes that 

we have constructed, we can conclude that the parameters which are 
introduced in the Bézier-like curves allow us flexible shape control and it is 

very helpful for curve design. 
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